Partial QuotientsDivision

(Aka - Big 7)
$1^{\text {st }}$ Way for Partial Quotients
Dividing by multiples of 10

Partial Quotients Division

$8 \quad 177$
Start by setting up the problem like this - it looks like the algorithm, but the right side has a long line drawn down.
(Just like in the Hangman Game.)

Ask - How many 8's are in 177?

There are at least 10, so that will be the first 177
80 10 partial quotient..

Multiply 10 * 8

Write the product under the dividend in the problem.

Then subtract!

$$
8 \times 100=800
$$

$$
\begin{array}{r|l}
8 \underline{177} \begin{array}{r}
8 \\
\hline 80 \\
\hline 97 \\
80
\end{array} & 10
\end{array} \begin{aligned}
& \text { Start the process } \\
& \text { over again. } \\
& \text { Ask - how many 8's } \\
& \text { are in } 97 ? \\
& \begin{array}{l}
\text { Again, there are at } \\
\text { least } 10 .
\end{array} \\
& \begin{array}{l}
\text { Put } 10 \text { on the right } \\
\text { side and multiply. }
\end{array} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r|rr}
8-\begin{array}{r}
177 \\
- \\
\hline 80 \\
-97 \\
-80 \\
\hline 17
\end{array} & 10
\end{array} \quad \text { Subtract } 97 \text { minus } 80 . \\
& 8 \times 10=80 \\
& 8 \times 100=800
\end{aligned}
$$

			Start the process again.
	$\begin{array}{r} 8 【 177 \\ -\quad 80 \\ \hline 97 \end{array}$	10	Ask - how many 8's are in 17.
	80	10	There are at least 2.
$8 \times 1=8$	17		Subtract.
$8 \times 10=80$	16	2	
$8 \times 100=800$			

	22		Since the 1 is less than
	$\begin{array}{r} 8 \longdiv { 1 7 7 } \\ -\quad 80 \end{array}$	10	8, you are finished dividing.
$8 \times 1=8$	$\begin{array}{r} \hline 97 \\ -\quad \begin{array}{r} 97 \end{array} \end{array}$	10	Now add up the partial quotients.
$8 \times 10=80$	$\begin{array}{r}17 \\ -\quad 16 \\ \hline\end{array}$	2	$10+10+2=22$
$8 \times 100=800$	1	22	Remainder 1

$2^{\text {nd }}$ Way Partial Quotients

This method combines Long Division with Partial Quotients

Dividing by multiples of 10 and other factors

Now, let's try to same problem
 Ask - How many 8's are in $17 ?$ 20

 using basic multiplication facts!We know that $8 \times 2=16$
Using multiples of 10 , we can do:
$8 \times 20=160$

$$
\begin{aligned}
& \begin{array}{r|r}
8 \begin{array}{|c|}
\hline 177 \\
\frac{160}{17} \\
-\begin{array}{r}
16 \\
1
\end{array} \\
\hline
\end{array} & 20 \\
2
\end{array} \\
& \text { Subtract } 17 \text { minus } 16 . \\
& 8 \times 1=8 \\
& 8 \times 10=80 \\
& 8 \times 100=800
\end{aligned}
$$

