PRIME FACTORIZATION

PRIME FACTORIZATION

Every composite number

 can be expressed as a product of prime numbers. This is called the prime factorization of a number.
PRIME FACTORIZATION

To find the prime

factorization of a number, you can use a factor tree.

FACTOR TREES

36
 \wedge
 6×6
 $\wedge \wedge$
 (2) $x(3) \times(3)$

$36=2 \times 2 \times 3 \times 3$ or $2^{2} \times 3^{2}$

FACTOR TREES

$$
\begin{aligned}
& 36 \\
& \wedge \\
& \text { (3) } \times 12 \\
& \text { (3) } \hat{x} 4 \\
& \text { (2) } \hat{x}(2)
\end{aligned}
$$

$36=2 \times 2 \times 3 \times 3$ or $2^{2} \times 3^{2}$

FACTOR TREES

9
\wedge
(3) $\times(3)$
$9=3 \times 3$ or 3^{2}

FACTOR TREES

21
 \wedge
 (3) $\times(7)$

$21=3 \times 7$

FACTOR TREES

100
 \wedge 10×10 (2) $\hat{x}(5)(2) \times(5)$

$100=2 \times 2 \times 5 \times 5$ or $2^{2} \times 5^{2}$

PRIME FACTORIZATION

To find the prime

factorization of a number,
you can use a factor ladder.

FACTOR LADDERS

2!36

Begin with the least prime number that is a factor.

Repeat until the quotient is
3ட 9 3 prime.
$36=2 \times 2 \times 3 \times 3$
or $2^{2} \times 3^{2}$

FACTOR LADDERS

$2 \lcm{60}$
Begin with the least prime number that is a factor.
$2 \lcm{30}$
Repeat until the quotient is
$3 \measuredangle 15$ 5 prime.
$60=2 \times 2 \times 3 \times 5$ or $2^{2} \times 3 \times 5$

FACTOR LADDERS

$3 \mid 45$
Begin with the least prime number that is a factor.
$3 \lcm{15}$
5
Repeat until the quotient is prime.
$45=3 \times 3 \times 5$
or $3^{2} \times 5$

FACTOR LADDERS

 number that is a factor. $5 \lcm{25}$ 5Repeat until the quotient is prime.

$$
125=5 \times 5 \times 5 \quad \text { or } 5^{3}
$$

